Principal component analysis for nonlinear model reference adaptive control
نویسندگان
چکیده
منابع مشابه
Principal component analysis for nonlinear model reference adaptive control
A nonlinear adaptive control strategy based on radial basis function networks and principal component analysis is presented. The proposed method is well suited for low dimensional nonlinear systems that are difficult to model and control via conventional means. The effective system dimension is reduced by applying nonlinear principal component analysis to state variable data obtained from open-...
متن کاملNonlinear Principal Component Analysis
A. Two quite different forms of nonlinear principal component analysis have been proposed in the literature. The first one is associated with the names of Guttman, Burt, Hayashi, Benzécri, McDonald, De Leeuw, Hill, Nishisato. We call itmultiple correspondence analysis. The second form has been discussed by Kruskal, Shepard, Roskam, Takane, Young, De Leeuw, Winsberg, Ramsay. We call it no...
متن کاملNonlinear principal component analysis
We study the extraction of nonlinear data models in high dimensional spaces with modi ed self organizing maps We present a general algorithm which maps low dimensional lattices into high dimensional data manifolds without violation of topology The approach is based on a new principle exploiting the speci c dynamical properties of the rst order phase tran sition induced by the noise of the data ...
متن کاملAnalysis of Speed Control in DC Motor Drive Based on Model Reference Adaptive Control
This paper presents fuzzy and conventional performance of model reference adaptive control(MRAC) to control a DC drive. The aims of this work are achieving better match of motor speed with reference speed, decrease of noises under load changes and disturbances, and increase of system stability. The operation of nonadaptive control and the model reference of fuzzy and conventional adaptive contr...
متن کاملAdaptive learning rate control for "neural gas principal component analysis"
We propose a novel algorithm for adaptive learning rate control for Gaussian mixture models of the NGPCA type. The core idea is to introduce a unit–specific learning rate which is adjusted automatically depending on the match between the local principal component analysis of each unit (interpreted as Gaussian distribution) and the empirical distribution within the unit’s data partition. In cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Chemical Engineering
سال: 2000
ISSN: 0098-1354
DOI: 10.1016/s0098-1354(00)00312-4